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Two-dimensional dynamic equations of thin plate vibrations are obtained from 

the three-dimensional dynamic equations of elasticity theory on the basis of an 

asymptotic method [ 1 - 31. Such an approach permits establishing the limits of 
applicability of the two-dimensional dynamic equations and the corresponding 
boundary and initial conditions, and indicating the means of obtaining refined 

results. 
The question of the construction of an inner state of stress of a thin plate under 

dynamic conditions is examined herein. The possibility of considering states of 
stress with distinct variability in time and in the coordinates and with a distinct 

relationship between the displacement intensities, is taken into account. 

Taking account of the presence of mass forces, let us go over to dimensionless quan- 
tities in the three-dimensional dynamic equations of elasticity theory in terms of dis- 

placements, and let us perform the change of variables 

where 

vx=+ (xy), u, =+, E=&-‘+- (zy), r,+-, T=< (1) 

to = &Of I/ P = -F- 
E &W-II v E 

(2) 

Here 2h is the thickness, I is the characteristic dimension of the plate, E = h/l is 
the relative thickness, and t, is the characteristic time which it is convenient to repre- 

sent as (2). 

The quantity o characterizes the variability of the state of stress in time ; the larger 
the o, the smaller the &, , and therefore, the more frequently does the process change 
with time. The quantity r = p/q (p, q are integers) characterizes the variability in 

the coordinates, where for r = 0 (q = 1, p = 0) the variability is such that the cha- 
racteristic dimension of the deformation pattern coincides with the characteristic geo- 
metric dimension l of the plate. 

Let us consider the mass forces X, Y, 2 acting on the plate to be constant over its 
thickness. (If the need to consider the dependence of X, Y, 2 on z were to arise, this 

would then not be difficult). 
We seek the solution of the equations obtained from the Lame equations, after making 

the passage (1) to the new variables as asymptotic series in the small parameter h = et/q 

V, = 6x+1-r 5 h”v:’ (xy), v; = EX ; yv!“’ (3) 
s=o SC0 

where x is some number which will be determined later. 
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The equations for v,(‘) (sy), vz(s) can be integrated with respect to 5, which yields 

KS1 
&’ = 2 @$! (zy), u;’ = i <ku$j (4) 

k=o k=O 

’ = { ~:~~~‘--I, 

if [s/Cl1 is an even number 
if lsicll is an odd number 

The square brackets here denote that the integer part of s/q is taken. 
We obtain recursion relations for $2 (xy), $2 which permit them to be determined 

in terms of quantities known from previous approximations (6ki is the Kronecker delta) 

(5) 

1 a &&29+2?9 

( 

a,;;2s+zl4 

-- 
1 - 2v ag % + arl > 

+ &&sq+2@ _ 

Here 

(6) 

(7) 

(8) 
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The boundary conditions 

o,z (E, r; A- 1) = r,* (XY), Gz.? G, vi + 1) = .z* (10) 

hold on the face planes of the plate for 5 = & 1 . Satisfying these conditions, we 

arrive at a system of equations which describe the internal state of stress of the plate. 

Let us be interested in those effects on the plate for which its motion is essentially of 

dynamic character. Hence, in obtaining the equations it must be stipulated that the 

inertial terms enter into the system of zero approximation equations. Clarifying the 

possibility of complying with the arbitrary conditions (10) and taking the above into 
account, we arrive at the deduction that it is necessary, firstly, that the first 2q - 2p 
terms in the expansions (7) for 5,, (XY) and the first 4q - 4p terms in the expansions 

for oyi vanish. This yields 

The relationships (11) are equivalent to compliance with the Kirchhoff-Love hypothesis, 

and the relationship (12) establishes a relation between the parameters characterizing 
the variability of the process in time and in the coordinates. 

We determine the value of 1c in (3) from the condition that the normal surface load 
is independent of the relative thickness. This yields 

31=--4+4r (13) 

Complying with the boundary conditions (10) on the face planes of the plate, we obtain 
the dynamic equations of a plate in different approximations. For any s they are 

1 
AA&) + 

a242 (S) 
3 (1 - Y2) - = Pz a22 (15) 

Introducing the notation 
t 

7, -xx - = ox (q/)7 G+ - t,- = Q* 
ax + 

(16) 
+ ‘6x-- = M, (xy), 7,+ + 7,- = 172 

the right sides of (14) for s < 4q - 4p become 

(17) 

1 - 8v a 
2(1--V) Px ($ + g) +3pAX*]} + a2u~;;rP) (zy) 

For s < 6q - 6p the right side of (15) becomes 
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pp = 6,O -&[Q*t_Et-r(qg+q-g+ pz*]- (18) 

2P2P alI4 
6s 

ait 
20E& A[@ - 34 Q, + +'+(+ f -$) + 

a2 
q&q+ ,:',;11\1, a,z Au(Z;2qf%') __ @-4P 1 

s 2/3(1-v) x 

{A AA[(227- 157v)Q,+~1-~(87 -17v)(q + -f$)+ 

(87- 17v)pZ*]- +&&[3(223 -141~222~~) &+ 

W2(72 + 101~ - 33v2)(+ + -f?$)+ 

~(422 _ 424v _ 33y2)p~]} _ (I+ y)(~55(1~~-33v2) ‘vy$~‘p’ 

Thus, we have an iteration process for the construction of the dynamic internal state 

of stress of a plate, in each of whose steps it is necessary to solve the same questions. 
The static equations of the generalized plane state of stress for the problem of plate de- 
formation in its plane (the inertial terms are known from the preceding approximations), 

and the dynamic equation of classical plate theory for the bending problem. For s = 0 
the right sides of these equations are expressed in terms of the surface load and the mass 

forces; for 0 < s < 2q - 2p they equal zero, and for s > 2q - 2p they are ex- 

pressed in terms of the surface load, the mass forces, and in terms of the sulutions for the 
preceding approximations. 

It is possible to pass from (14) (15) obtained for distinct approximations to equations 

without an approximation superscript but defined to a given asymptotic accuracy. To 

the accuracy of 0 (~~-0) , the dynamic equations of a thin plate, written in terms of the 

initial dimensional qunatities in (1) are 

I -- 
2Eh Ox (XY) 

AAuzo+ +!!& 

D = 2Eh3/3 (1 - v2) 

(19) 

(20) 

where GO, GO, uzo are the displacements of points of the middle surface. Therefore, 
we obtain the same internal state of stress equation for dynamic processes with different 

variability in time (i. e. for different o) , The static equations of the generalized plane 

state of stress and the dynamic transverse vibrations equation which is not hyperbolic. 

However, the accuracy of these equations depends substantially on CO. As o increases 
the accuracy diminishes and for o = 2 the equations become entirely inaccurate. 

As follows from (1). (3) and (12). for OI = 2 the characteristic dimension of the de- 
formation pattern for a plate becomes equal to h and the intensities of all the displace- 
ments are identical. This indicates the essentially three-dimensional nature of the pro- 
cessat 0 =2. 

More exact dynamic equations of a plate can be obtained from (14). (15). Equations 
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to the accuracy 0 (E~-‘O) are 

- 
(21) 

(22) 

’ iQI+pz.+h(++s)-hh2 ’ x 
D 20h (1 --- Y) 

Th!s+%)+FpZ*]) 

It is seen from (21) that to 0 (~~~~0) accuracy the generalized plane stress equations 
are of wave nature. All the terms needed to assure 0 (e4-ao) accuracy are retained in 

(22) which describes the transverse plate motion. This equation is not completely hyper- 
bolic. A certain wave process associated with the presence of a term with ~2Au,oldt2 
is imposed on the transverse plate motion and instantaneously encompasses the whole 

plate. 

Meanwhile, a Timoshenko-type equation for a plate obtained by Ufliand [4],taking 

into account the shear caused by transverse stresses. and rotational inertia, is completely 
hyperbolic. This is related to the fact that a term with a4~,,/dt4 was taken into account 
in the equation mentioned ; however, as an asymptotic analysis shows, it should be taken 

into account only in equations with a higher asymptotic accuracy. 

The equation of transverse plate motion obtained by an asymptotic method and having 
0 (&G-so) accuracy is 

A&,, _ F l;;l-~;, _?Auz, + ?!!$ (I + “) (45;; ,““; - 33v2) x (23) 

w p-Z’] - h4 2E (:_ v) x 

{& AA[(227 - 157~) Qz + h (87 - 17~) (3 + $) + 

(87 - 17x7) pz’] - g $ [3 (223 - 141~ - 22x9) QZ + 

h2 (72 + 101~ - 33~~) 

2 (422 - 424~ - 339) pz’]}} 

Besides the shear strains and rotational inertia, finer factors are also taken into account 
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in this equation, whose physical meaning is difficult to discover. As the Ufliand equa- 
tion [4], this equation is of completely hyperbolic type, but differs in the coefficients 

and the right sides. 

Let us investigate what type the equations of transverse plate motion are, conespond- 
ing to still higher accuracy. Let us write down just the higher terms governing the kind 

of equation. We have 
d,~Au,,+...= .., (0 (Es-@)) (24) 

cl 
&L_ +&,+d,$+...=... ( 0 (&10-5w)) 

Thus, the equations of transverse plate motions determined with a higher accuracy than 

0 (&B-30), d o not belong to the completely hyperbolic type. As the accuracy of the 

equations increases, terms appear with higher and higher orders of the time derivatives ; 
however, the coefficients of these derivatives diminish as the order of these derivatives 
grows. 

It follows from the above that to obtain refined results for the dynamic behavior of a 

thin plate, it is expedient to use an iteration process whose construction reduces to the 
solution of the same usual equations (14), (15) at each step, i. e. to the solution of the 
static equations of the generalized plane state of stress and the dynamic bending equa- 
tion of the classical theory. 

The refined equations corresponding to diverse asymptotic accuracy are constructed 
for a comparison with the refined equations obtained on the basis of hypotheses, and for 

estimation of their accuracy. 

Depending on the value of the parameter o characterizing the variability of the state 

of stress in time, the following classification of the dynamic processes occurring ina thin 

plate can be proposed. 

(1) Quasistatic processes (o < 0). The two-dimensional equations for a number of 
first approximations do not contain inertial terms (the time t is considered a parameter). 

In the equations of those approximations in which the inertial terms appear, they are in 

the right sides and are known from previous approximations. 
(2) Dynamic processes (0 < 0 < 2). The problem of deformation of a plate in its 

plane is of quasistatic character and the bending problem reduces to the dynamic equa- 

tion of classical theory. 
(3) Essentially three -dimensional processes (o > 2) which cannot be described by 

any two-dimensional theories. 

Let us still examine one more question. We note that the velocity of longitudinal 

wave propagation equals v/P for a medium with the Poisson’s ratio Y = 0 and 
1.16 1/m for a medium with Y = 0.3. Hence, the quantity v/P is close to the pro- 
pagation velocity of perturbations in real materials. The quantity L (1,) = to v/E/p is 
commensurate with the distance to which a perturbation is propagated in the plate ma- 

terial in the characteristic time to. We have 

Ze-l < L (to) < h 

for dynamic processes for which 0 < o < 2 . Therefore, for dynamic processes for which 

the characteristic dimension of the deformation pattern is commensurate with the char- 
acteristic geometric dimension I (i.e. for o = 0), the perturbation traverses a distance 

e-l -fold greater than the characteristic plate dimension in the time to- As w increases, 
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the distance L (to) diminishes. For o = 1 when the characteristic dimension of the de- 

formation pattern is commensurate with v z, the quantity L (1,) is commensurate with 
1. But for o = 2 the characteristic dimension of the deformation pattern and the quan- 
tity L (to) become commensurate with h. This also indicates that the dynamic processes 

corresponding to the values o > 2 are essentially three-dimensional in nature. 
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On the basis of results in [ 11, a derivation is given of the fundamental Hertz re- 

lationships for the compression of anisotropic (orthotropic) bodies which differs 
from [a]. It is shown that if the elastic constants satisfy some additional condi- 
tions, then the domain of contact is a circle in the compression of axisymmetric 
bodies along their common axes of geometric symmetry. 

1. Formulation of the problem and itr #oluiion.Two bodies initially 
touching at a point and subjected to compressive forces P have a common elliptical 
contact area after deformation because of its smallness. If .a1 and z2 are in the same 
direction as the internal normals to the surfaces bounding the bodies at the point oftheir 
initial contact, then the 2, y axes in the common tangent plane can always be selected 

SO that the equality 
Wi -/- w2 = 6 - x2 / 2R, - y2 / 2R, (1.1) 

would hold in the contact domain. Here Wj are elastic displacements of the body points 
in the Zj direction, 6 is the approach of the bodies, Rj are specified and determined 
by the shape of the bodies in the neighborhood of their initial contact point Cl]. The 
pressure domains of the bodies are replaced by half-spaces in the computation of Wj be- 
cause of the smallness of the dimensions. Therefore, in conformity with Cl], the stress 
on the pressure area is determined by 

o, = 3P (2nab)-1 (1 - 52 / us - y2 / b2) 
(1.2) 


